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ABSTRACT

We prove that the neighborly cubical polytopes studied by Günter

M. Ziegler and the first named author [14] arise as a special case of the

neighborly cubical spheres constructed by Babson, Billera and Chan [4].

By relating the two constructions we obtain an explicit description of a

non-polytopal neighborly cubical sphere and, further, a new proof of the

fact that the cubical equivelar surfaces of McMullen, Schulz and Wills [16]

can be embedded into R
3.

1. Introduction

Our point of departure is a paper by Babson, Billera and Chan [4], in which the

authors introduce an inductive construction of cubical d-spheres from certain

sequences of simplicial (d − 1)-balls and their boundary spheres of dimension

d − 2. It turns out that such cubical spheres reflect many properties of the

simplicial spheres involved, but in a cubical disguise. In particular, this way the

boundary of a neighborly simplicial (d− 1)-polytope yields a neighborly cubical
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d-sphere, that is, a sphere which has the same ⌊(d − 1)/2⌋-skeleton as some

high-dimensional cube. Later it was shown by entirely different methods that

there even exist neighborly cubical spheres which are polytopal [14].

Our first result, Theorem 3.2, establishes a non-recursive combinatorial de-

scription of the cubical spheres studied by Babson, Billera and Chan. From this

it can be inferred that particular sequences of pulling triangulations of cyclic

polytopes yield the polytopal spheres studied in [14], see Corollary 3.7. As a

further benefit of this direct description we observe in Theorem 3.9 that the

simplicial spheres involved in the construction must necessarily be polytopal in

order to yield polytopal cubical spheres. In Theorem 3.10 we derive that there

exists a non-polytopal neighborly cubical 5-sphere on 2048 vertices. Our proof

is based on an explicit construction involving a certain non-polytopal 3-sphere

M10
425. This sphere was found by Altshuler [2], and its non-polytopality was

verified by Bokowski and Garms [7].

A seemingly different topic is the construction of polyhedral surfaces of ‘un-

usually large genus,’ pioneered by Coxeter [9] and Ringel [20], and continued

by McMullen, Schulz and Wills [16, 17]. Yet we can show that the neighborly

cubical 4-polytopes of [14] contain cubical surfaces with n vertices of genus

O(n log n) in their boundary, answering a question of Günter M. Ziegler [24].

Via Schlegel diagrams, that is, perspective projections onto a facet, this gives a

simple new proof of the known fact that there are such surfaces which can be

embedded into R
3 with straight faces.

2. Cubical and Simplicial Complexes

We review the ingredients of the construction of Babson, Billera, and Chan [4]

with slight generalizations.

The reader is advised to consult the monographs [12] and [25] for general

information about convex polytopes and related topics.

2.1. Cubes. Consider the 2d affine halfspaces

H+
i =

{

x ∈ R
d: xi ≤ 1

}

and H−

i =
{

x ∈ R
d: − xi ≤ 1

}

,

which define the d-dimensional cube

Cd = H+
1 ∩ · · · ∩ H+

d ∩ H−

1 ∩ · · · ∩ H−

d .

The intersections

F σ
i = ∂Hσ

i ∩ Cd = {x ∈ Cd : σxi = 1} , σ ∈ {±1},
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of their boundaries with the cube are precisely the facets of Cd, that is, its

maximal proper faces. The vertices of Cd are all the 2d vectors of length d

with coordinates ±1, and their joint convex hull is the cube Cd. Two facets F+
i

and F−

i are parallel, and hence they do not share any vertex of Cd.

It is a general fact about convex polytopes that each proper face, that is,

any intersection of the polytope with a supporting hyperplane, can be written

as the intersection of facets. Thus, for the special case of the d-cube, each non-

empty face F can be written uniquely as F = F
σi1

i1
∩ · · · ∩ F

σi
k

ik
, where ij 6= il

for any j 6= l. By letting σj = 0 for all j 6∈ {i1, . . . , ik} the non-empty face

F can be identified with the ordered sequence (σ1, . . . , σd) of signs +1, 0,−1 of

length d. Conversely, each such sign vector defines a face. For ease of notation

we often omit the 1’s of ±1.

The intersection of a k-dimensional cube face, or k-face for short, with a facet

is either empty or a (k− 1)-face. This readily implies that the dimension of the

face (σ1, . . . , σd) equals the number of 0-entries in its sign vector.

0 0 0

- 0 0 0 0 + 0 - 0 0 + 0 0 0 - + 0 0

- 0 + - - 0 - + 0 0 - + - 0 - 0 + + 0 - - + 0 + 0 + - + - 0 + + 0 + 0 -

 

- - + - + + - - - - + - + - + + + + + - - + + -

Figure 1. Face lattice of C3.

The reflections at the coordinate hyperplanes {x ∈ R
d: xi = 0} generate an

elementary abelian group Σd of order 2d which acts sharply transitively on the

vertices of Cd. The full automorphism group Γd of the d-cube is isomorphic to

a semi-direct product of Σd and the stabilizer of a vertex, which is Symd, the

symmetric group of degree d. In fact, Γd is the wreath product Z2 ≀ Symd.

2.2. Regular Cell Complexes and Posets. A regular cell complex is

a family C of closed balls in a Hausdorff space XC , such that the interiors of the

balls partition XC and the boundary of each ball is the union of balls in C. The

topology of a regular cell complex is completely determined by its face poset;

see Björner [6, Prop. 3.1].
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An abstract d-complex P is a ranked poset of rank d + 1 such that there

exist unique lower bounds for any set of elements (that is, P is a meet semi-

lattice) and every order ideal is combinatorially isomorphic to the face lattice

of a polytope. The elements of this partially ordered set are called faces. The

boundary of a finite abstract d-complex is the set of faces of corank 1 contained

in only one maximal face. An abstract d-complex is a cubical (simplicial)

complex if every face of P is combinatorially isomorphic to a cube (simplex).

These are CW posets of polyhedral type as introduced by Björner [6]. Thus

we are able to speak of topological properties of abstract d-complexes. An

abstract 2-complex representing a connected 2-manifold without boundary is a

polyhedral surface.

2.3. Mirroring. An abstract simplicial complex ∆ on d vertices can be seen

as a subcomplex of the (d − 1)-dimensional simplex. The cube Cd is a simple

d-polytope, that is, each of its vertex figures is a (d − 1)-simplex. Here the

vertex figure of a polytope P at a vertex v is the intersection of P with an

affine hyperplane which separates v from the other vertices of P . We construct

a (cubical) subcomplex of Cd which corresponds to a simultaneous embedding

of ∆ into the vertex figures of all the vertices of Cd such that these embeddings

are invariant under the action of the group Σd.

Following Babson, Billera and Chan [4] we encode ∆ in a non-standard way: If

1, 2, . . . , d are the vertices of ∆ we associate with a face ϕ ∈ ∆ the characteristic

function of its complement {1, . . . , d} \ ϕ. Using this description we define

M(∆) =
{

(σ1, . . . , σd) ∈ {0,±1}d: (|σ1|, . . . , |σd|) ∈ ∆
}

,

the mirror complex of ∆, which is a subcomplex of the d-cube.

1 2 3

Figure 2. Simplicial complex ∆ on three vertices, its symmetric

embedding into Cd, and the mirror complex M(∆).
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By construction the vertex figure of the mirror complex of a simplicial complex

is isomorphic to the simplicial complex itself. Thus if the simplicial complex is a

d-sphere, then its mirror complex is a (d+1)-manifold. The f -vector of the mir-

ror complex of a simplicial complex ∆ on n vertices is fi(M(∆)) = 2n−ifi−1(∆).

Further the mirror complex of the boundary of a simplicial complex is the bound-

ary of the mirror complex: M(∂∆) = ∂ M(∆).

Proposition 2.1: Let ∆ be a simplicial complex with automorphism group Γ.

Then the automorphism group of M(∆) is isomorphic to the semi-direct product

Σd ⋊ Γ.

2.4. Fissuring. The cubical fissure or fissuring is an operation that produces

a new cubical complex from a given one. Let C be a pure cubical d-complex, C1

and C2 facet-disjoint d-dimensional subcomplexes of C such that C1 ∪ C2 = C.

The cubical fissure fisC(C1, C2) of C between C1 and C2 is defined by lifting

C1 to height one, dropping C2 to height minus one and filling in the fissure with

(C1 ∩ C2) × [−1, 1]. The corresponding poset is

fisC(C1, C2) = (C1 × {+1}) ∪ ((C1 ∩ C2) × {0}) ∪ (C2 × {−1}),

with +1 < 0 and −1 < 0 in the last component. If C is a subcomplex of the n-

cube given as sign vectors of length n, then the cubical fissure canonically yields

a subcomplex of the (n+1)-cube. The cubical fissure between a subcomplex C1

and its complement C2 yields a complex consisting of the subcomplex C1 and

its complement connected via a prism over the boundary of C1.

Example 2.2: Consider the simplicial complex ∆ of Figure 2 on three vertices.

The mirror complex C1 = M(∆) is a subcomplex of the boundary complex of

the 3-cube C = ∂C3. So the cubical fissure between C1 and its complement in

C is a subcomplex of the boundary of the 4-cube, see Figure 3.

Figure 3. Two subcomplexes of the 3-cube and their cubical fissure

in the Schlegel diagram of the 4-cube.
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2.5. BBC Sequences of Simplicial Balls. Babson, Billera, and Chan [4]

proved the existence of neighborly cubical spheres. Their approach is based

on an inductive construction using triangulations of cyclic polytopes, mirror

complexes and fissuring. A close inspection of their proof motivates the following

definition. While this does look a bit technical it is one of the keys to our main

results.

Definition 2.3: Let V = {v1, . . . , vn} be a set of vertices and let T = (Ti)
n
i=d+1

be a sequence of simplicial d-balls. We say that T is a BBC sequence if

(i) each Ti is of the form Ti = Bi−1 ∗vi, where Bi−1 is a simplicial (d−1)-ball

on the vertex set {v1, . . . , vi−1}; and

(ii) Bi−1 ⊆ ∂Ti−1 for i = d + 2, . . . , n.

Remark 2.4: Let P be a simplicial (d+1)-polytope with vertices v1, . . . , vn. We

may assume that the vertices of P lie in general position since P is simplicial.

So every subset of at least d + 2 of its vertices is again the vertex set of a

simplicial (d + 1)-polytope. Thus by taking an arbitrary ordering (vl1 , . . . , vln)

of the vertices of P we obtain a sequence of (d + 1)-balls Pi = conv(vl1 , . . . , vli)

for i = d+2, . . . , n. The corresponding BBC sequence (Ti)
n
i=d+2 is the sequence

of pulling triangulations of Pi with respect to vli .

Example 2.5: Consider the pentagon with its vertices labeled in cyclic order

and construct a BBC sequence as in Remark 2.4. The BBC sequence consists of

three elements: the triangle T3, the pulling triangulations of the 4-gon T4, and

the pulling triangulation of the 5-gon T5. The vector representation of Ti and

∂Ti for i = 3, 4, 5 are given in Table 1. The table also shows the subcomplexes

B3 ⊂ ∂T3 and B4 ⊂ ∂T4 such that T4 = B3 ∗ v4 and T5 = B4 ∗ v5.

Table 1. BBC sequence of a pentagon as described in Example 2.5.

The vectors in {0, 1}i are the characteristic functions of the comple-

ment of the vertex sets in [i], for example 11001 represents {3, 4}.

The subcomplex Bi−1 of ∂Ti−1 such that Ti is the join of Bi−1 with

the vertex vi are printed in bold.

Facets of Ti Facets of ∂Ti

T3 000 001 100 010

T4 0010 1000 0011 1001 1100 0110

T5 00110 10010 11000 00111 10011 11001 11001 01110
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Note that (Ti)
n
i=d+1 is a BBC sequence if and only if each boundary sphere ∂Ti

is directly obtainable from its predecessor ∂Ti−1 in the sense of Altshuler [1].

In loc. cit. he proved that there is a 3-sphere on ten vertices which is not directly

obtainable. Remark 2.4 implies that such a sphere cannot be polytopal.

Remark 2.6: Since each sphere of dimension at most 2 is polytopal it follows

that every BBC sequence of 3-balls is a sequence of pulling triangulations of

polytopes. But there exist BBC sequences of simplicial 4-balls such that the final

boundary sphere is not polytopal. One such sequence is described in Section 3.5,

Table 4.

2.6. Neighborly BBC Sequences. A simplicial complex is (simplicially)

k-neighborly if every k-subset of its vertices is a face. In other words, its

(k − 1)-skeleton is isomorphic to the (k − 1)-skeleton of a simplex. A simplicial

d-sphere is (simplicially) neighborly if it is simplicially ⌊(d+1)/2⌋-neighborly.

In the following [k] denotes the set of positive integers {1, . . . , k}.

The next two observations are also implicit in the work of Shemer [23]. We

start off with a lemma connecting the neighborliness of the cone over a simplicial

ball with the neighborliness of the simplicial ball.

Lemma 2.7: Let B be a simplicial (d− 1)-ball on the vertex set [i− 1], and let

T = B ∗ i its d-dimensional cone for some d ≥ 2. Then ∂T is k-neighborly if

and only if ∂B is (k − 1)-neighborly and B is k-neighborly.

Proof: The boundary ∂T is equal to (∂B ∗ i) ∪ B since T = B ∗ i. If ∂T is

k-neighborly all k-subsets of [i] are faces of ∂T . Because ∂T is the union of

∂B ∗ i and B, all (k− 1)-subsets of [i− 1] must be contained in ∂B and B must

contain all k-subsets of [i − 1]. This means that ∂B is (k − 1)-neighborly and

B is k-neighborly.

Conversely, if ∂B is (k − 1)-neighborly and B is k-neighborly then ∂T =

(∂B ∗ i) ∪ B obviously contains all the k-subsets of [i].

We call a BBC sequence (Ti)
n
i=d+1 neighborly if the final boundary sphere

∂Tn is neighborly. With Lemma 2.7 and an induction we obtain a characteriza-

tion of neighborly BBC sequences.
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Proposition 2.8: Let (Ti)
n
i=d+1 be a BBC sequence of d-balls for d ≥ 2 with

Bi defined as in Definition 2.3. Then the following are equivalent:

(1) (Ti)
n
i=d+1 is a neighborly BBC sequence.

(2) ∂Ti is a neighborly (d − 1)-sphere for all i = d + 1, . . . , n.

(3) For all i = d + 1, . . . , n the ball Bi−1 is ⌊d/2⌋-neighborly, and the sphere

∂Bi−1 is (⌊d/2⌋ − 1)-neighborly.

Neighborly BBC sequences arise naturally from neighborly simplicial poly-

topes as in Remark 2.4. So the above definition is a generalization of the se-

quences of pulling triangulations of cyclic polytopes originally used by Babson,

Billera, and Chan.

Corollary 2.9: Take an arbitrary ordering of the vertices of a neighborly

simplicial polytope. Then there exists a realization such that the induced pulling

triangulations form a neighborly BBC sequence.

3. Cubical Spheres from BBC sequences

In Section 3.1 we generalize the construction of Babson, Billera, and Chan using

BBC sequences. Then, in Section 3.2, we derive a non-recursive sign vector

representation for the cubical sphere constructed from a BBC sequence. Then

we show that the neighborly cubical spheres built from special vertex orderings

of cyclic polytopes are indeed isomorphic to the neighborly cubical polytopes

studied in [14]. Further we construct a non-polytopal neighborly cubical sphere

based on a BBC sequence obtained from the non-polytopal Altshuler 3-sphere

on 10 vertices (cf. Altshuler [2] and Bokowski and Garms [7]).

3.1. Cubical Spheres. Let T = (Ti)
n−1
i=d be a BBC sequence of simplicial

(d− 1)-balls. We inductively define cubical complexes Sk+1 for k = d, . . . , n− 1

with 2k+1 vertices. Babson, Billera, and Chan begin their inductive definition

with Sd, which is two d-cubes identified at their complete boundary. But since

this does not yield a regular cell complex, we start with Sd+1 = ∂ Cd+1 the

boundary of the (d + 1)-cube (that is, the mirror complex of the boundary of

the d-simplex). Then for k = d + 1, . . . , n − 1 we recursively define

Sk+1 = fisSk
(M(Tk), Sk \ M(Tk))

= (M(Tk) × {+1}) ∪ (∂ M(Tk) × {0}) ∪ ((Sk \ M(Tk)) × {−1}).

We denote the final cubical complex Sn by bbc(T ).
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Theorem 3.1: Let T = (Ti)
n−1
i=d be a BBC sequence of simplicial (d− 1)-balls.

Then the cubical complexes Sk and, in particular, bbc(T ) are cubical d-spheres.

Proof: This is part of what is proved by Babson, Billera and Chan [4, Theo-

rem 3.1]. The essential step in the inductive argument is to see that the mirror

complex of Tk is actually a subcomplex of Sk, such that fissuring is possible.

If the simplicial balls Ti are equipped with a piecewise-linear (PL) structure,

then the resulting cubical spheres are also PL [4].

3.2. A Combinatorial Description. The following theorem states a

purely combinatorial description of the cubical spheres constructed from BBC

sequences. Its characterization as a subcomplex of a high dimensional cube is

close to the Cubical Gale Evenness Condition [14, Theorem 18].

Theorem 3.2: Let T = (Ti)
n−1
i=d be a BBC sequence of simplicial (d − 1)-balls

with n > d > 2. Then the facets of the cubical d-sphere bbc(T ) correspond to

the following list of d-faces of the n-dimensional cube Cn; they are represented as

sign vectors α ∈ {0,±1}n with exactly d zeros. The type t of a facet corresponds

to the number of trailing non-zero entries in α:

⊲ type t = 0: αn = 0 and |α(n−1)| := (|α1|, . . . , |αn−1|) ∈ ∂Tn−1,

⊲ type 0 < t < n − d: α = (α(n−t−1), 0, αn−t+1 = σ,−1, . . . ,−1), where

σ ∈ {±1}, α(n−t−1) ∈ {0,±1}n−t−1 with

(1) |α(n−t−1)| ∈ ∂Tn−t−1, and

(2) if σ = +1, then |(α(n−t−1), 0)| ∈ Tn−t;

if σ = −1, then |(α(n−t−1), 0)| 6∈ Tn−t,

⊲ type t = n − d: α = (0, . . . , 0, σ,−1, . . . ,−1) with σ ∈ {−1, +1}.

Proof: We prove that the vector representation of the facets of the cubical

sphere given by the theorem corresponds to the facets of the inductive definition

of Sk used in Theorem 3.1:

Sk+1 = (M(Tk) × {+1}) ∪ (∂ M(Tk) × {0}) ∪ ((Sk \ M(Tk)) × {−1})

It was already shown in Theorem 3.1 that all Sk are cubical spheres. We proceed

by induction on k. The sphere Sd+1 is the boundary of the (d + 1)-cube for

k = d + 1. The facets of Sd+1 are the vectors α ∈ {0,±1}d+1 with exactly

one non-zero entry. The facets of Td = ∆d−1 are the vectors in {0, 1}d with
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one 1. Thus all the facets of Sd+1 are either of type 0 or type 1 shown in Table 2.

Table 2. The facets of Sd+1 are the facets of the (d + 1)-cube.

Type Facets

0 ± 0 · · · 0

0 0 ± 0
...

0
...

. . .
. . . 0

1 0 · · · 0 ±

The inductive step is split into two claims showing that the vector description

and the inductive definition of Sk yield the same combinatorics.

Claim: Each facet in the vector representation given by the theorem is also a

facet in the inductive definition via fissuring.

We analyze all types of facets of the vector representation of Sk+1.

⊲ type 0: The facets of type 0 are the vectors α = (α(k), 0) ∈ {0,±1}k+1

with |α(k)| ∈ ∂Tk. This is equivalent to α(k) ∈ M(∂Tk) and thus (α(k), 0) ∈

M(∂Tk) × {0} = ∂ M(Tk) × {0}.

⊲ type 1: The facets of type 1 are the vectors α = (α(k−1), 0, σ) with

|α(k−1)| ∈ ∂Tk−1 and

(1) σ = +1 if (|α(k−1)|, 0) ∈ Tk or

(2) σ = −1 if (|α(k−1)|, 0) 6∈ Tk.

By induction (α(k−1), 0) is a type 0 facet of Sk, and

(1) if (|α(k−1)|, 0) ∈ Tk then (α(k−1), 0) ∈ M(Tk) and thus (α(k−1), 0, +1)

is contained in M(Tk) × {+1} ⊆ Sk+1.

(2) Otherwise, if (|α(k−1)|, 0) 6∈ Tk then (α(k−1), 0) ∈ Sk \ M(Tk) and

thus (α(k−1), 0,−1) ∈ (Sk \ M(Tk)) × {−1} ⊆ Sk+1.

⊲ type 1 < t0 ≤ k + 1 − d: The facets of type t0 are the vectors

(α(k−t0), 0, σ,−1, . . . ,−1) ∈ {0,±1}k+1

with σ ∈ {±1} and α(k−t0) ∈ {0,±1}k−t0. Taking only the first k entries

of α = (α(k),−1), it follows by induction that α(k) is a type t0 − 1 facet

of Sk. By the definition Tk is a cone with apex k and thus all its facets

contain the vertex k. Since the last entry of α(k) is not zero, α(k) cannot

be a facet of M(Tk). Further it is not contained in M(∂Tk) because it has

d zero entries. Thus α(k) is a facet of Sk \ M(Tk) and (α(k),−1) ∈ Sk+1.
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Claim: Each facet in the inductive definition via fissuring is also a facet in the

vector representation given by the theorem.

There are three different kinds of facets of Sk+1 according to the inductive

definition. We will determine the type of each kind of facet.

⊲ The facets of M(Tk) × {+1} are the vectors α = (α(k), +1) ∈ {0,±1}k+1

with |α(k)| ∈ Tk. Since by definition of the BBC sequence Tk = Bk−1 ∗ vk

with Bk−1 ⊆ ∂Tk−1, we obtain α
(k)
k = 0 and |α(k−1)| ∈ ∂Tk−1. Hence α

is a facet of type 1 of Sk+1.

⊲ The facets of M(∂Tk) × {0} are the vectors (α(k), 0) ∈ {0,±1}k+1 with

|α(k)| ∈ ∂Tk. These are the facets of type 0 of Sk+1.

⊲ The facets of (Sk \ M(Tk)) × {−1} correspond to vectors α = (α(k),−1)

with α(k) ∈ Sk \ M(Tk). Using the inductive assumptions we distinguish

two kinds of facets of Sk:

(1) Either α(k) is a facet of type 0 of Sk not contained in M(Tk), that

is, α(k) = (α(k−1), 0) with |α(k−1)| ∈ ∂Tk−1 and α(k) 6∈ M(Tk),

(2) or α(k) is a facet of type t0 ∈ {1, . . . , k − d} of Sk not contained in

M(Tk), that is, α(k) = (α(k−1),±1).

In the first case, α is a facet of type 1 of Sk+1 since (|α(k−1)|, 0) 6∈ Tk. In

the second case, α is a facet of type t0 + 1 of Sk+1.

Hence the cubical sphere bbc((Ti)
n−1
i=d ) = Sn has the facets given by the

theorem.

If T = (Ti)
n−1
i=d is a neighborly BBC sequence, n > d > 2, then each simplicial

(d − 2)-sphere ∂Ti is neighborly. The number of facets s(i, d − 2) of ∂Ti is

determined by the Dehn–Sommerville equations, see Grünbaum [12, §9.2]. For

odd dimension d we have

s(i, d − 2) =

(

i − d−1
2

i + 1 − d

)

+

(

i − d+1
2

i + 1 − d

)

=
2i

2i − d + 1

(

i − d−1
2

i + 1 − d

)

.

Adding up these equations (according to the types of facets described in Theo-

rem 3.2) results in a formula for f(n, d), the number of facets of the (neighborly)

cubical sphere bbc(T ). The even dimensional case may be treated similarly and

is left to the reader. The same formula occurs in [14, Corollary 19] where,

however, the even and the odd-dimensional case are erroneously exchanged:

Corollary 3.3: Let T = (Ti)
n−1
i=d be a neighborly BBC sequence of simplicial

(d − 1)-balls with n > d > 2 and d odd. Then the number of facets of bbc(T )
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is given by

f(n, d) = 2(d + 1) +

n−d−2
∑

t=0

s(n − t − 1, d − 2)2n−t−d

= 2(d + 1) +

n
∑

k=d+2

2k − 2

2k − 1 − d

(

k − d+1
2

k − d

)

2k−d.

A notion of a neighborly cubical complex is defined in Section 3.3.

Example 3.4: A (neighborly) cubical 3-sphere with the graph of the 6-cube may

be constructed from a BBC sequence of the pentagon described in Example 2.5.

The f -vector of the sphere is (64, 192, 192, 64). The vector representations of Ti

and ∂Ti for i = 3, 4, 5 are given in Table 1. The mirror complexes of Ti and ∂Ti

are obtained by simply replacing the 1’s by ±1’s. So according to the inductive

definition we start with S4, the boundary of the 4-cube and fissure first along

M(∂T4) and then along M(∂T5). This yields the facet description of S6 listed

in Table 3.

Table 3. Facets of the neighborly cubical 3-sphere S6 sorted by

type; see Example 3.4. The facets occur in different multiplicities

depending on the number of ± entries in the corresponding row: For

example, every row of type 0 represents eight facets. The rows of the

4×4 minor printed in bold are the facets of S4, that is, the boundary

of the 4-cube. The facets of S5 are the 8 × 5 minor printed in bold

and plain. The horizontal lines underline the inductive structure.

Type Facets

3 0 0 0 ± − −

2 0 0 ± 0 + −
2 0 ± 0 0 − −
2 ± 0 0 0 + −

1 0 0 ± ± 0 +
1 ± 0 0 ± 0 +
1 ± ± 0 0 0 +
1 0 ± ± 0 0 −

0 0 0 ± ± ± 0
0 ± 0 0 ± ± 0
0 ± ± 0 0 ± 0
0 ± ± ± 0 0 0
0 0 ± ± ± 0 0
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3.3. Neighborly Cubical Spheres. A cubical complex is (cubically) k-

neighborly if it has the (k − 1)-skeleton of a cube. A cubical d-sphere is

(cubically) neighborly if it is cubically ⌊(d+1)/2⌋-neighborly. This is similar

to the simplicial case and not as in Babson, Billera and Chan, where a k-

neighborly cubical sphere has the k-skeleton of a cube.

The neighborliness of a simplicial complex is preserved by mirroring, that is,

the mirror complex of a k-neighborly simplicial complex is a (k + 1)-neighborly

cubical complex: In its sign vector representation a k-neighborly simplicial com-

plex ∆ on n vertices contains all vectors in {0, 1}n with k zeros, i.e. all k-subsets

of [n]. Thus its mirror complex M(∆) contains all vectors in {0,±1}n with k

zeros. These vectors represent the k-skeleton of the n-cube, which means M(∆)

is (k + 1)-neighborly.

Cubical neighborliness is also preserved by certain fissuring operations. Given

a k-neighborly pure cubical complex C and a subcomplex S containing all ver-

tices. If the boundary of S is k-neighborly, then the cubical fissure between S

and its complement in C is again a k-neighborly cubical complex.

This yields neighborly cubical spheres from any neighborly BBC sequence

with the same construction as in Theorem 3.1.

Corollary 3.5: Let T be a neighborly BBC sequence of simplicial (d − 1)-

balls. Then the cubical complex bbc(T ) is a neighborly cubical d-sphere.

3.4. Neighborly Cubical Polytopes. In this section we show that for

very particular neighborly BBC sequences, the neighborly cubical spheres con-

structed therefrom are isomorphic to the boundaries of the neighborly cubical

polytopes described in [14, Theorem 18] and thus polytopal. The neighborly

cubical polytopes have the following sign vector representation.

Theorem 3.6 (Cubical Gale Evenness Condition): The facets of the neighborly

cubical polytope ncpd+1 (n) are given by vectors α ∈ {0,±1}n with d zeros.

They are classified by the number t of leading ±1’s:

⊲ type t = 0: α1 = 0, and |α| satisfies the simplicial Gale Evenness Con-

dition: between any two values αi, αj ∈ {±1} there is an even number of

zeros.
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⊲ type 0 < t < n − d: α = (−1, +1, . . . , (−1)t−1, σ, 0, α(n−t−1)), with σ ∈

{±1}, α(n−t−1) ∈ {0,±1}n−t−1 and:

(1) |α(n−t−1)| satisfies the simplicial Gale Evenness Condition, and

(2) if σ = (−1)t+1, then α(n−t−1) starts with an even number of zeros;

if σ = (−1)t, then α(n−t−1) starts with an odd number of zeros.

⊲ type t = n− d: α = (−1, +1, . . . , (−1)t−1, σ, 0, . . . , 0) with σ ∈ {−1, +1}.

Consider the cyclic (d − 1)-polytope on n vertices cycd−1(n) given as the

convex hull of the vertices vj = (j, j2, . . . , jd−1) for j = 1, . . . , n. The facets

of the cyclic polytope are given by Gale’s Evenness Condition, cf. [10] and [25,

Theorem 0.7]. Let Ti denote the pulling triangulation of cycd−1(i) with respect

to the vertex vi. The pulling triangulation is the cone with apex vi over the

facets of cycd−1(i) not containing vi. To satisfy Gale’s Evenness Condition the

facets not containing vi have to end with an even number of zeros. Thus the

facets of Ti according to our vector notation for simplicial complexes are the

vectors ϕ ∈ {0, 1}i with d zeros, such that:

(1) ϕi = 0, i.e. all facets contain vi,

(2) (ϕ1, . . . , ϕi−1) satisfies Gale’s Evenness Condition, and

(3) ϕ ends with an odd number of zeros.

The facets of the neighborly cubical sphere constructed from the corresponding

neighborly BBC sequence (Ti)
n−1
i=d are readily derived from Theorem 3.2. These

specific spheres are polytopal, since they are isomorphic to the neighborly cubi-

cal polytopes.

Corollary 3.7: Let d ≥ 3 and Ti be the pulling triangulation of the cyclic

polytope cycd−1(i) with respect to the last vertex as above. Then the neigh-

borly cubical sphere bbc((Ti)
n−1
i=d ) and the boundary of the neighborly cubical

polytope ncpd+1 (n) are combinatorially isomorphic. The isomorphism is given

by inverting the order and then flipping the even bits:

Φ: {0,±1}n → {0,±1}n,

(α1, α2, . . . , αn) 7→ (αn,−αn−1, . . . , (−1)nα2, (−1)n+1α1).

Remark 3.8: We briefly summarize some results studied in [22, Section 3.6.3].

The neighborly cubical d-spheres constructed from BBC sequences of cyclic

(d − 1)-polytopes on d + 1 vertices are combinatorially isomorphic.
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Since in even dimension the automorphism group of every cyclic polytope

acts transitively on its vertices, its pulling triangulations are combinatorially

isomorphic. Thus the neighborly cubical spheres constructed from arbitrary

vertex orderings of even dimensional cyclic polytopes are combinatorially unique

and thus all polytopal. This includes Example 3.4.

In odd dimension d − 1, the automorphism group of a cyclic polytope with

more than d+1 vertices does not act transitively on the vertices. Thus we were

able to construct non-isomorphic neighborly cubical 4-spheres from different

triangulations of the cyclic 3-polytope on six vertices.

3.5. A Non-polytopal Neighborly Cubical Sphere. To algorithmically

decide the polytopality of spheres is generally possible but of considerable com-

plexity, see Bokowski and Sturmfels [8], Richter-Gebert [19], and Basu et al. [5].

If standard heuristic methods fail the problem can often be approached by ap-

plying suitable ad-hoc techniques only. A good example is the 3-sphere M10
425

found by Altshuler in an exhaustive enumeration of all neighborly simplicial

3-manifolds on ten vertices [2]. Its polytopality could not be decided at first,

and so it was up to Bokowski and Garms [7] to prove that M10
425 does not admit

any convex realization. Below we take this very example as the starting point

for a construction of a neighborly cubical sphere which cannot be polytopal in

view of the following result.

Theorem 3.9: Let T = (Ti)
n−1
i=d be a BBC sequence of simplicial (d− 1)-balls,

neighborly or not, such that the cubical d-sphere bbc(T ) is polytopal. Then the

simplicial (d − 2)-sphere ∂Tn−1 is necessarily polytopal.

Proof: Suppose that bbc(T ) is isomorphic to the boundary complex of a convex

cubical (d + 1)-polytope P ⊂ R
d+1. Consider the edge e of P corresponding

to the sign vector (+1, . . . , +1, 0) of length n. Choose an affine hyperplane H ,

parallel to e, which separates the edge e from the 2n − 2 vertices of P not

contained in e. Next we choose a second affine hyperplane H ′, orthogonal to e,

which separates the two vertices of e. Then, since H and H ′ are not parallel

to each other, P/e = P ∩H ∩ H ′ is a (d − 1)-dimensional convex polytope, the

edge figure of e with respect to P . Its face lattice is isomorphic to the filter

of e, that is, the faces of P containing e, in the face lattice of P .
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Now the facets of P which contain e are exactly the facets of type 0 with-

out negative signs in their sign vector representation. From Theorem 3.2 we

conclude that ∂(P/e) is isomorphic to ∂Tn−1, and hence the claim.

As a consequence, each BBC sequence of simplicial (d − 1)-balls with the

property that its final boundary sphere is non-polytopal yields a non-polytopal

cubical sphere. Note, however, that in contrast to polytopal spheres, see Corol-

lary 2.9, for non-polytopal spheres there is no standard procedure to obtain a

corresponding BBC sequence. Moreover, it follows from work of Altshuler that

there is a simplicial 3-sphere on ten vertices which does not admit any BBC

sequence [1].

Theorem 3.10: There is a non-polytopal neighborly cubical 5-sphere with

211 = 2048 vertices and f(11, 5) = 3584 facets. Its complete f -vector is

f = (2048, 11264, 28160, 33280, 17920, 3584).

Proof: Table 4 lists a neighborly BBC sequence A = (Ai)
10
i=5 of simplicial 4-

balls with the property that the boundary of the final ball A10 is isomorphic to

the Altshuler 3-sphere M10
425.

The simplicial 4-ball A8 is a pulling triangulation of the neighborly simplicial

4-polytope on eight vertices which occurs as P 8
36 in the list of Grünbaum and

Sreedharan [13]; this is one of the two non-cyclic neighborly simplicial polytopes

with these parameters.

The simplicial 4-ball A9 is a pulling triangulation of a neighborly simplicial

4-polytope on nine vertices: The previous simplicial 3-sphere ∂A8 is separated

by the 2-sphere ∂B8 into the 3-balls B8 and its complement B′
8. The boundary

∂A9 now is directly obtained from ∂A8 by first removing B′
8 and then inserting

the cone over ∂B8 with the new vertex 9 as the apex. Since ∂A8 is polytopal

and B′
8 is a 3-simplex which is stacked once over each of its four facets it follows

that A9 is again polytopal: The vertex 9 can be chosen in a way such that it is

exactly beyond all the facets of B′
8 in the sense of Shemer [23, page 301].

The sphere ∂A10 is directly obtained from ∂A9 and isomorphic to M10
425 and

thus not polytopal due to Bokowski and Garms [7]. From Theorem 3.9 it follows

that the neighborly cubical sphere bbc(T ) is not polytopal.
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Figure 4 visualizes the complements of the simplicial 3-balls B5, B6, B7, B8,

and B9 and their boundaries.
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(a) Bipyramid over triangle: ∂B5. (b) 3-simplex stacked on two facets: ∂B6.
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(c) Cone over a strip of four
triangles: ∂B7.

(d) 3-simplex stacked on all
its facets: ∂B8.
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Cone over a strip of six triangles: ∂B9.

Figure 4. The subcomplexes B′
i = ∂Ai \ Bi of the BBC sequence of

the Altshuler sphere; see Theorem 3.10. The sphere ∂Bi = ∂B′
i is

the link of the new vertex i in the sphere ∂Ai+1.

Remark 3.11: The polytopal neighborly simplicial 3-sphere ∂A9 is the unique

3-sphere on nine vertices with Altshuler determinant equal to 103361328. It

occurs as N9
19 in the classification of Altshuler and Steinberg [3] and as mani-

fold 3 9 523 in Lutz [15].
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Table 4. Facets of the neighborly BBC sequence A of the non-

polytopal Altshuler sphere M10
425. The simplicial ball Ai is the join

of the vertex i − 1 and the subcomplex Bi−1 of the facets of ∂Ai−1

printed in bold.

Facets of Ai Facets of ∂Ai

A5 01234 0123 0124 0134 0234 1234

A6 01235 01245 12345 0123 0124 0135 0145 0235
0245 1234 1345 2345

A7 01236 01356 01456 12346 0123 0126 0135 0145 0146
13456 23456 0236 0356 0456 1234 1246

1345 2345 2356 2456

A8 01237 01267 01357 01457 0123 0126 0135 0145 0147
02367 03567 04567 12347 0167 0236 0356 0456 0467
13457 23457 1234 1247 1267 1345 2345

2357 2367 2457 3567 4567

A9 01238 01268 01358 01458 0123 0126 0135 0145 0148
01678 02368 03568 04568 0167 0178 0236 0356 0456
04678 13458 23458 23578 0467 0478 1238 1268 1345
23678 35678 45678 1348 1678 2345 2348 2357

2367 2458 2578 2678 3567
4567 4578

A10 01239 01269 01359 01459 0123 0126 0135 0145 0148
01489 01679 02369 03569 0167 0179 0189 0236 0356
04569 04679 13459 13489 0456 0467 0479 0489 1239
23459 23489 23579 23679 1269 1345 1348 1389 1679
24589 25789 26789 35679 2345 2348 2357 2367 2389
45679 2458 2578 2678 2689 3567

4567 4579 4589 5789 6789

4. Polyhedral Surfaces

In this section we describe a nice way to realize polyhedral surfaces of ‘unusu-

ally large genus’ [17] in the Schlegel diagram of neighborly cubical polytopes.

The surfaces considered are cubical polyhedral surfaces where each vertex has

degree q. They were first described by Coxeter [9] in 1937 in terms of reflection

groups. Ringel [20] explicitly described these surfaces whilst analyzing prob-

lems concerning the graph of the n-dimensional cube. He pointed out that the

surfaces are of lowest genus among all surfaces on which the graph of the n-cube

may be drawn without self intersection. Further he gave an explicit combinato-
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rial description of these surfaces as a 2-dimensional subcomplexes of the n-cube.

McMullen, Schulz and Wills [16, 17] analyze equivelar surfaces, a much more

general class of polyhedral surfaces which include the cubical surfaces of Coxeter

and Ringel.

Definition 4.1: An equivelar surface Mp,q is a polyhedral surface such that

all 2-faces are p-gons and all vertices have degree q.

McMullen, Schulz and Wills were the first to point at the ‘unusually large

genus’ of these surfaces. In particular, they inductively constructed embeddings

for the cubical equivelar surfaces of type M4,q in R
3.

4.1. Equivelar Surfaces and Mirror Complexes. Let Q be the bound-

ary of a q-gon for q > 2 and M(Q) its mirror complex. With the vertices of Q

labelled in cyclic order we obtain the same vector representation as Ringel [20,

page 17] of M(Q):

0 0 ± ± · · · ± ± ±
± 0 0 ± · · · ± ± ±
. . . . · · · . . .
. . . . · · · . . .
± ± ± ± · · · ± 0 0
0 ± ± ± · · · ± ± 0

The mirror complex of Q is an equivelar surface M4,q since the vertex figure

of every vertex of M(Q) is isomorphic to Q. It is embedded in the 2-skeleton of

the q-cube.

The obvious way to realize a 2-dimensional subcomplex of the q-cube in R
5

is in the Schlegel diagram of the 6-dimensional neighborly cubical polytope

ncp6 (q) of [14]: Since the neighborly cubical polytope ncp6 (q) has the 2-skeleton

of the q-cube, M(Q) is contained in the boundary of ncp6 (q). The Schlegel

diagram of ncp6 (q) is embedded in R
5, thus M(Q) may be realized in R

5.

Let Ti be the pulling triangulation of the i-gon for i = 3, . . . , q − 1. The

facets of type 0 of S3(q) = bbc((Ti)
q−1
i=3 ) are the mirror complex of a cone over

the boundary of the (q − 1)-gon. Since the q-gon and its pulling triangulation

are subcomplexes of this cone, the mirror complex of the q-gon and the mirror

complex of its pulling triangulation are both subcomplexes of S3(q). This yields

a cubificated embedding of the surface M(Q) into the neighborly cubical 3-

sphere S3(q). By Corollary 3.7 this sphere is isomorphic to the boundary of

the neighborly cubical polytope ncp4 (q). Hence the mirror complex of the q-

gon can be realized as a subcomplex of the Schlegel diagram of ncp4 (q) in R
3.



240 M. JOSWIG AND T. RÖRIG Isr. J. Math.

This answers a question of Günter M. Ziegler [24] whether some of the surfaces

from [17] can be found as subcomplexes of the neighborly cubical polytopes.

The genus of this surface may easily be calculated from its f -vector

f(M(Q)) = (2q, 2q−1q, 2q−2q):

g(q) = 1 + 2q−3(q − 4) = O(f0 · log f0).

Thus q = 12 is the first parameter for which the genus g(12) = 4097 exceeds

the number of vertices, which equals 212 = 4096.

Since the surface arising from the 12-gon is too hard to visualize we display the

mirror complex of the pentagon in the Schlegel diagram of ncp4 (5) in Figure 5.

Figure 5. The mirror complex of the 5-gon is an equivelar surface of

type M4,5 of genus 5. It is realized in the Schlegel diagram of the

neighborly cubical polytope ncp4 (5), which is embedded in R
3.

5. Concluding Remarks and Acknowledgments

It can be shown that if the BBC sequence T is polytopal then the cubical sphere

bbc(T ) is also polytopal [21]. In view of Theorem 3.9 this gives the complete

picture of the construction as far as questions of polytopality are concerned.

For the visualization of the simplicial balls and the polyhedral surface M4,5

we used the software packages polymake [11] and JavaView [18].
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We are indebted to Frank H. Lutz for his help in recognizing the sphere ∂A9

in Table 4. Moreover, we are grateful to an anonymous referee who scrutinized

the submitted version of this paper and who pointed out several minor errors.
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